+7 (499) 653-60-72 448... +7 (812) 426-14-07 773...
Main page > SAMPLE > Production product equipment for applying metal coatings

Production product equipment for applying metal coatings

Production product equipment for applying metal coatings

Agricultural scientists. Executive Administrative and Managerial Physicists and astronomers. Visual arts occupations. Performing arts occupations.

Dear readers! Our articles talk about typical ways to solve the issue of renting industrial premises, but each case is unique.

If you want to know how to solve your particular problem, please contact the online consultant form on the right or call the numbers on the website. It is fast and free!


Protecting the world

VIDEO ON THE TOPIC: Rust Encapsulator Platinum - Stop Rust on Vehicles, Equipment Or Anything That Rusts! Eastwood

Metals make it possible to have a variety of products, such as industrial production equipment, automobiles, aircraft, or consumer electronics. The corrosion metals are subject to, however, is a problem. Preventive measures, such as the right coating, can delay or eliminate corrosion. Historically, in non-critical industries, corrosion was treated as a repair and maintenance issue.

More recently, however, preventive measures significantly reduce corrosion costs. These measures include appropriate material selection, careful component design, and corrosion control.

Cast iron pipe coated with polyurethane coating to protect against undersea exposure. Photo: Chemline. Active corrosion control involves the use of a sacrificial material often zinc that participates in corrosion reactions rather than the metal substrate. Passive protection involves the application of a barrier material that prevents corrosive reagents and water from reaching the surface of the metal substrate.

These coatings and films also often provide additional protection against impact, abrasion, and other mechanical damage. Different coating technologies meet the varied requirements; selecting the best coating technology for an application can be challenging.

Here are several guidelines. Conventional technology: epoxies There are two major classes of coating technologies recognized for protective properties: epoxies and polyurethane-type systems, which include polyurethanes, polyureas and hybrids of these two chemistries. Epoxies are widely used as corrosion protection coatings for factory-applied metal applications because they exhibit excellent adhesion to metals and offer high moisture-, chemical-, and impact-resistance.

They continue to be widely used as primers sometimes zinc-rich in multi-coat systems, including those with different topcoat chemistries acrylics for light-duty applications, epoxies, silicones, polyurethanes and polyureas for medium- to heavy-duty applications.

There are, however, limitations to epoxy coatings that have driven interest in alternative technologies for corrosion control. In particular, epoxy coatings are not very flexible and can crack in applications that involve substrate movement, high wear, or heavy impacts. They also do not perform well at low temperatures become brittle and yellow over time in exterior applications due to degradation upon exposure to UV radiation.

For these reasons, polyurethane and derivative coating technologies are increasingly used as corrosion control coatings for OEM metal applications due to their greater flexibility combined with high adhesion and high resistance to moisture, chemical attack, and impact. Chemistry of polyurethanes and polyureas Isocyanates are used to synthesize both polyurethane and polyurea resins. Polyurethanes are obtained when diisocyanates or polyisocyanates react with polyols, while polyureas are generated when they react with amines.

In hybrid systems, isocyanates are reacted with a mixture of amines and polyols. For many polyurethanes except moisture-cured systems, for example , a catalyst is required to ensure rapid reaction of the isocyanate and polyol components. On the other hand, isocyanates react rapidly with amines, and thus no catalyst is required for the formation of polyureas.

A range of isocyanate, polyol and amine reactants are available for the synthesis of polyurethanes, polyureas and hybrids. Isocyanates can be aliphatic or aromatic. Aromatic compounds such as, diphenylmethane diisocyanate MDI and toluene diisocyanate TDI contain bonds that can absorb UV radiation, which leads to their breakdown and the undesirable yellowing of the coatings. Polyethers, polyesters, and polycarbonates are the polyol types most widely used for polyurethane and hybrid polymer production.

In some cases, the polyol contains more than one type of linkage. Specialized polyols, such as polycaprolactones, are preferred for some applications. The length of the polyol chain has a significant impact on the hardness short and flexibility long of the coating, while the type of polyol impacts properties such as chemical and moisture resistance. The diamines used for the preparation of pure polyureas and hybrids are typically polyamines.

Often two different types are used: amine-terminated polymer resins, typically polyetheramines, and amine-terminated chain extenders, generally pure polyamines. Both primary and secondary amines can be used, with secondary amine reacting more slowly.

Hybrids can be formed by reacting isocyanates with a physical blend of polyols and diamines, or by incorporating hydroxyl groups into the polyamine often the chain extender.

Initial water-based systems did not perform as well their solvent-based counterparts and also suffered from application issues. Advances in PU technology have, however, led to the development of many PU dispersions that have application properties closer to those of solvent-based systems.

The crosslinking that occurs during PU film formation imparts specific properties to these coatings. They exhibit excellent gloss and color retention for pigmented formulations; clear topcoats are also possible , combined with good chemical and moisture resistance, even for thin film builds, which is crucial for applications where weight is a concern such as in automotive and aerospace industries. Aliphatic PUs also resist UV light for exterior applications. PU coatings mechanical properties include high impact, abrasion and scratch resistance.

Because polyurethanes comprise two distinct components—the polyisocyanate and polyol portions—their properties are tunable through selection of different isocyanate and polyol building blocks. As a result, it is possible to achieve PU coatings that range from very flexible elastomeric to very rigid. They also have excellent adhesions to different substrates, including metal.

Thus, one product line can often be used for multiple applications, which can reduce carrying costs in inventory. Furthermore, for light- to medium-duty applications, polyurethanes can be used as single, direct-to-metal coatings, eliminating the need for a primer, which also reduces material and labor costs. Polyurethane coatings cure fairly rapidly, even at lower temperatures, but most require a catalyst.

The exception is moisture-cured systems, in which the water in the air acts as the catalyst. These systems are suitable for use in humid conditions. OEM applications for polyurethane coatings cover a broad swath of industries. Factory-applied, solvent-based systems including high-solids formulations are widely used in the furniture, cabinetry, and flooring industries. PU coatings are also used to some extent in the automotive industry in underbody, interior and exterior primer, base, topcoat applications, as well as for truck-bed liners both factory-applied and aftermarket.

All types of PU coatings find use in general industrial metal, heavy equipment and plastic primer, topcoat and clear-coat applications. Direct-to-metal rigid PU systems are used for OEM pipe coating and steel storage tank applications, while elastomeric systems applied as a foam hard-coat are for waterproofing and durability in architectural trim, themed entertainment applications, and occasionally building panels.

Due to the nature of the urea linkage, they are not sensitive to moisture; no blistering occurs, even when polyureas are applied on substrates in the presence of liquid water. The urea linkages also contribute to enhanced chemical and water resistance. The combination of isocyanate and amine-terminated polyol segments delivers an attractive combination of flexibility and hardness. Unlike polyurethanes, polyureas can be applied at very high film builds.

As a result, they can serve not only as protective coating layers, but also contribute to the structural integrity of a substrate. They adhere to a range of substrates, including concrete, metals, wood, composites, foam and others. There are challenges to working with polyureas, however. When first introduced, polyureas often suffered from substrate wetting, intercoat adhesion and surface defect issues. Developments in both raw materials and application equipment have helped overcome these shortcomings.

Even so, proper mixing is crucial for optimum film formation and adhesion. In general, polyurea coatings are preferred as topcoats for rapid curing applications fast turnaround times , the coated substrate will be exposed to extreme conditions and appearance is not a key concern. In addition, they are used in applications where a thinner topcoat PU or otherwise may be damaged, leading to potential problems with corrosion and degradation.

Polyureas are also often selected to replace epoxies in applications where elongation and impact resistance are important, because epoxies often crack and delaminate under such conditions. Examples include OEM waterproofing applications and rail and barge coatings. In general, polyureas are frequently used in the field due to their insensitivity to moisture and temperature.

On-site applications include roof, pipe and tank coatings, truck-bed liners, liners for large tanks freight ship lines, bulk transport wagons , car parking decks, bridges and offshore protection. Polyaspartic ester-based polyurea coatings represent a newer technology based on the reaction of isocyanates with aliphatic polyaspartic esters aliphatic diamines.

These coatings generally cure more slowly than polyureas and can be applied at thinner film builds. Like polyurethanes, they are applied using conventional airless sprayers. Thus, they are often used in the same applications that can use PUs. Hybrids — the best of both The use of blends of amine- and hydroxyl-terminated polyols creates even more opportunities for fine-tuning the properties of hybrid coatings.

Controlling the curing time lets you develop smooth to textured films with the desired surface appearance combined with the higher performance of polyureas. They have good elongation and flexibility combined with excellent chemical and solvent resistance and resistance to abrasion and impact.

Like polyureas, they can be applied at low temperature. However, the application of hybrid coatings is less complex easier impingement mixing than that of polyureas, although plural component spray equipment and applicator training are still required. Consequently, they are often preferred over polyureas because hybrids can meet these requirements and still offer rapid turnaround times, and do so at a lower cost than pure polyurea coatings. The most common OEM uses are corrosion control and waterproofing applications where the high performance of polyureas is not required and hybrids provide more attractive solutions on a cost-performance basis.

In some cases, hybrids are preferred because they offer a unique set of properties that cannot be achieved with a pure PU or polyurea system.

Hybrids are also finding use in secondary containment application over concrete and geotextiles. These chemistries offer a range of properties suitable for different application conditions and performance needs.

The factors to consider when selecting a protective coating for a given application include: the type of substrate, the application technology, the conditions under which the coating must perform, the cure time, the desired film thickness and the performance requirements adhesion, appearance, and mechanical and resistance properties.

Cost is also clearly a key driver in the selection of a coating technology. Polyurethane coatings are the least expensive, polyureas the most costly, and hybrid coatings fall in between. Polyurethanes are often considered to offer the best compromise between cost and performance. Thin-film polyurethanes suit applications where performance and a high-quality finish are required. In less demanding applications, they can be applied as a single coat for example, direct-to-metal , but are often used as the topcoat when the coated substrate must be protected from more extreme conditions.

Polyureas, which can be sprayed in poor conditions including extreme temperatures and high humidity, are commonly used for outdoor or on-site applications. Polyurethanes and hybrids, which require catalysts for curing, are not suitable here. Less-expensive hybrids are preferred for OEM applications where the higher-performance curing properties of polyureas are not required, but similar applied-film properties are desired. Chemline Inc. Would this product be strong enough to run steel down hole pipe on in?

We cover our steel racks with rubber stripping for steel grades that require special handling. The rubber does not stay on very well. If we coated the top of our racks, would this product stand up to having steel pipe rolled on top of it?

Now in its second edition and still the only book of its kind, this is an authoritative treatment of all stages of the coating process. Cold Spray Technology covers a wide spectrum of various aspects of the Cold Spray technology, including gas-dynamics, physics of interaction of high-speed solid particles with a substrate as well as equipment, technologies, and applications. This website requires certain cookies to work and uses other cookies to help you have the best experience.

We understand that to maintain a competitive edge, you must deliver the highest-quality aluminum or steel in the most cost-effective way possible. Our thermal spray and laser weld overlay wear- and corrosion-resistant coatings maintain quality, reduce costs, extend the service life of critical rolls and prevent unplanned outages due to roll surface failures. Our coating service centers, technologies, and unmatched research and development resources can help you improve productivity and ultimately make a better product. Coating Services for the Primary Metals Industry 1.


Metals make it possible to have a variety of products, such as industrial production equipment, automobiles, aircraft, or consumer electronics. The corrosion metals are subject to, however, is a problem. Preventive measures, such as the right coating, can delay or eliminate corrosion. Historically, in non-critical industries, corrosion was treated as a repair and maintenance issue. More recently, however, preventive measures significantly reduce corrosion costs. These measures include appropriate material selection, careful component design, and corrosion control. Cast iron pipe coated with polyurethane coating to protect against undersea exposure.

DSM Coating Resins

United States. National Recovery Administration. Cold Storage Door Manufacturing July Structural Steel and Iron Fabricating July

SEE VIDEO BY TOPIC: Industrial Coating Production Line (Powder Coating&Shot Blasting&Sandblasting&Painting)
For almost a century, Metallisation Ltd have been designing, building and supplying metal spray equipment and providing solutions to the thermal spray industry.

Baril Coatings is a developer and producer of high-quality, industrial coatings and construction paints that are very durable. We deliver them worldwide to steel and utility construction, OEM and the metal industry, marine and offshore and to painting companies. The DualCure thin layer technology guarantees unprecedented wear resistance, strong adhesion and lasting flexibility. This way, the coating provides the life-long steel protection in a C5 environment. Due to the very quick drying process, the production process is accelerated, less staffing is required and the number of logistical operations is reduced. More information: www. SteelKote coatings are very dense in structure and therefore almost impermeable. This makes the coatings extremely suitable for immersion in soil and fresh water, as well as salt and brackish water. SteelKote guarantees extreme corrosion protection in all atmospheric conditions.


Paint is the most commonly used material to protect steel. Paint systems for steel structures have developed over the years to comply with industrial environmental legislation and in response to demands from bridge and building owners for improved durability performance. Previous five and six coat systems have been replaced by typically three coat alternatives, and the latest formulations have focussed on application in even fewer numbers of coats, but with increasing individual film thickness. The protective paint systems usually consist of primer , undercoat s and finish coats.

Your heavy-duty equipment and trucks take some real punishment. With a focus on easy-to-apply liquid coatings, we deliver the exact protection you need to extend your equipment lifetime and reduce your maintenance costs.

With over 90 years of experience starting from the design and manufacture of industrial spray guns to the development of entire automated paint finishing systems, Sprimag has grown into the world leader in industrial painting equipment. Quality "Made in Germany", customer satisfaction and protection of the customer processes are our guidelines for order processing and the development of new innovative coating systems. We invest in our employees as well as in modern production technologies for innovative, useful coating systems and products in order to achieve lasting improvements in the customer processes and the production process. Here you can find vacancies for our divisions such as mechanics, electrics, construction or commercial as well as current training places. Sprimag offers many career opportunities — whether for experienced professionals, career starters or apprentices. Learn more about this in our careers section. Sprimag uses cookies. By continuing your visit on the website, you consent to the use of cookies. OK More information. Application Areas for Surface and Internal Coating. Surface Coating.

Automated Paint Finishing and Coating Systems: Starting from the design and systems, Sprimag has grown into the world leader in industrial painting equipment. production technologies for innovative, useful coating systems and products in order Application Areas for Surface and Internal Coating Metal Packaging.

Petrochemical Corrosion Protection

Valmont began in when founder, Robert B. Today, Valmont is a global leader of engineered products and services for infrastructure, and water-conserving irrigation equipment for agriculture. Learn More. Valmont Coatings is the industry leader in hot-dip galvanizing and protective coating services. These services provide corrosion protection for a variety of metal products, bolstering their durability, lifespan and aesthetic value. All Valmont Coatings systems provide superior corrosion protection; protecting products from the elements and making them last longer. Read More. Coating is a critical step in the manufacturing process. Its purpose is to protect and enhance the material it is applied to, increasing the lifespan and performance of the product. Association Memberships Learn More.

Make the right choice for metal coating for the right application

Oil and gas industries feature a wide variety of production stages and equipment. Tough operating conditions and extreme safety requirements are the common denominators. Protection against: UV radiation Abrasion ie. Teknos has strong and well-documented proof of its expertise in the surface treatment for internal and external pipeline applications, both in powder and wet coatings. Protection against: Corrosion UV radiation Heat Chemical stress spillages, fumes, immersion inside tanks and pipes Solar heat. Teknos develops and manufactures special paints and powder coatings to meet the strict, versatile needs of oil and gas industry. Download brochure. For protecting objects of gas infrastructure TEKNOS offers certified paint systems which allow working under all reasonable environmental conditions, providing excellent coating quality and long service life.

Metal Coatings Corp. Companies nationwide trust Metal Coatings Corp. In addition to specializing in fastener coating service, Metal Coatings Corp.

At DSM, we understand metal. Our resins for protective coatings are used across a broad range of metal-based general industrial applications, from ACE and heavy construction to industrial equipment, lawn and garden, metal fabrication and exercise equipment.

Industrial coatings provide more than just an aesthetic finish to on industrial equipment or base materials. Industrial coatings are engineered barriers that protect parts from a wide variety of damages and extreme environments.

A coating is a covering that is applied to the surface of an object, usually referred to as the substrate. The purpose of applying the coating may be decorative, functional, or both. The coating itself may be an all-over coating, completely covering the substrate, or it may only cover parts of the substrate. An example of all of these types of coating is a product label on many drinks bottles- one side has an all-over functional coating the adhesive and the other side has one or more decorative coatings in an appropriate pattern the printing to form the words and images.

Comments 0
Thanks! Your comment will appear after verification.
Add a comment

  1. There are no comments yet. Be first!

© 2018 chroniquesaigues.com